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The toroidal-poloidal decomposition for divergenceless vector fields in three dimensions is 
used to classify incompressible steady velocity fields in three dimensions according to whether 
they have zero, or nonzero helicity, and whether they are integrable, or nonintegrable as 
dynamical systems. Linearized steady Rayleigh-BCnard convection flows provide examples 
from each class. Computational techniques that preserve volume and helicity are developed 
and used to visualize the Lagrangian particle trajectories of three-dimensional advection for 
two Rayleigh-BCnard flows having zero helicity in a periodic domain. 

1. INTRODUCTION 

The Lagrangian representation of the motion of a fluid 
particle path x(t) in a steady incompressible flow in R3 is 
given by the dynamical system of advection equations 
% = v(x), with div v = 0. When v is a nonlinear function of 
x, dynamical systems theory implies that the solutions of 
these advection equations may exhibit deterministic chaos 
(e.g., show extreme sensitivity to initial conditions), even 
though the function v is smooth. In such cases, tluid particle 
paths that start close to one another generally do not stay 
close, even in stable “laminar” flows. Regarding the advec- 
tion equations as a dynamical system [i.e., a mechanical sys- 
tem with degrees of freedom x(t) ] thus raises the issue of 
distinguishing among fluid flows on the basis of whether 
their Lagrangian particle paths are regular or chaotic. As a 
dynamical systems question, the issue is to decide on the 
integrability of a given advection equation. For the present 
purposes, a dynamical system in B3 is said to be “integrable” 
if its orbits can be reduced to a “phase portrait,” i.e., a para- 
metrized set of non-self-intersecting curves on a two-dimen- 
sional manifold. Of course, this issue also arises in many 
other fields and has been widely investigated, particularly in 
studies of geometrical configurations of magnetic field lines. 
These magnetic-field-line studies indicate that nonintegra- 
ble divergenceless flows in B3 may have dense, space-filling 
orbits and may show extreme sensitivity to initial conditions, 
leading to a loss of predictability, even though the system is 
deterministic. In contrast, integrable divergenceless flows in 
R3 have only periodic and homoclinic (or heteroclinic) or- 
bits, whose behavior is regular and does not lose predictabi- 
lity over time. 

Three-dimensional incompressible flows possess a prop- 
erty not possessed by planar flows called “helicity,” which 
indicates the linkage, or knottedness of the flow. This, in 
turn, indicates the complexity of the flow, and may also indi- 
cate something about its mixing properties. The helicity of 
an incompressible flow v with vorticity w = curl v in a three- 
dimensional domain IR is given by the integral over the do- 
main of flow, A = Jhl. PO. The helicity measures the total 
number of (positive and negative) links, or knots, of the 
velocity field v with itself. See AmoldIe for a discussion of 
the significance of helicity as a topological property, which is 
invariant under volume-preserving diffeomorphisms. 
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The helicity is of interest here, because nonzero helicity 
is a necessary condition for nonintegrable particle motion 
(see Arnold’ and H&on4 ) . Nonintegrable particle motion 
includes, but is not limited to, chaotic particle paths (streak- 
lines). 

The aim of the present work is to look further at integra- 
ble and nonintegrable particle motion for three-dimensional 
incompressible flows whose helicity is zero. This is done on 
the grounds that zero-helicity flows in three dimensions 
might be expected to be less complex (and, therefore, more 
tractable) than tlows with nonzero helicity. To visualize 
these flows, we develop a numerical integration technique 
that models volume-preserving diffeomorphisms (and 
thereby preserves helicity) to high accuracy. 

Two zero-helicity flows derived from the linearized 
steady Rayleigh-BCnard convection equations are modeled 
in detail. Both flows possess saddle-focus connections, and 
both are deformations of the same basic integrable flow. 
That is, these two flows both limit to the same basic integra- 
ble flow when certain parameters in the equations are set to 
zero. One of these l-lows-of Chandrasekhar*-is an inte- 
grable deformation of the basic integrable flow, while the 
other--of Art@---is a nonintegrable deformation of the 
same integrable flow. (The Arter flow is a sum of two inte- 
grable Hamiltonian flows in B3 that is not integrable in gen- 
eral. ) 

Even for these relatively simple cases, computer simula- 
tions indicate that great care must be exercised in modeling 
three-dimensional (3-D) flows to avoid producing chaotic 
behavior as a numerical artifact. In particular, the spatially 
periodic heteroclinic network of saddle-focus connections, 
which is present analytically in the integrable Chandrasek- 
har flow, is found in the numerical integrations to show 
twisted, ribbonlike structures with intricate geometrical pat- 
terns. These geometrical patterns are due to phase relations 
imposed on nearly recurrent orbits by preservation of vol- 
ume in the numerical algorithm. However, the orbits should 
be exactly recurrent, i.e., periodic. Instead, perturbations 
(caused by small numerical errors) are amplified in passing 
repeatedly through the network of spiral foci in the Chan- 
drasekhar flow, and these perturbations apparently lead to 
Shilnikov chaos. (The saddle foci of the heteroclinic 
network do satisfy the Shilnikov criterion for a perturbed 
heteroclinic cycle to produce sensitive dependence on initial 
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conditions. However, the presence of Shilnikov chaos is not 
rigorously demonstrated here for the numerical algorithm 
we use. ) 

The next section divides three-dimensional incompress- 
ible flows into classes, according to their helicity and their 
integrability as dynamical systems. The classes are zero heli- 
city, or nonzero helicity: integrable, or nonintegrable. These 
classes of flows are delineated using the two scalar potentials 
in the well-known toroidal-poloidal decomposition for di- 
vergenceless vector fields in IX’. Linearized steady Rayleigh- 
BCnard convection flows provide examples from each class. 
In Sec. III, computational techniques for modeling volume- 
preserving diffeomorphisms (and, hence, preserving heli- 
city) are developed, and used to visualize the Lagrangian 
particle trajectories of three-dimensional advection for two 
zero-helicity flows, the (nonintegrable) Arter flow and the 
(integrable) Chandrasekhar flow, for various values of the 
parameters in these flows. 

II. CLASSIFICATION OF 3-D FLOWS 
A. Toroidal-poloidal decomposition 

Steady three-dimensional incompressible velocity fields 
may be represented by the well-known toroidal-poloidal 
(T-P) decomposition, 

v = curl(G2) + curl curl(H2), (1) 
where G and Hare the toroidal and poloidal scalar poten- 
tials, respectively, and 2 = Vz is the unit vector in thez direc- 
tion. (See, e.g., Chandrasekhar et aLTm9 for discussions of the 
T-P decomposition.) The functions G and Hare related to 
the z components of vorticity and fluid velocity by 

A,G= - (curlv.2) = - (~a), 

A,H= - (~41, (2) 

where A, = a,, + a,,,, is the Laplacian operator in the hori- 
zontal plane. The velocity in the T-P decomposition is invar- 
iant under the following gauge transformation: 

H+H’=H+q G+G’=G+y, 
where 77 and y satisfy 

@ + curl 72 = Vp, 

for some continuous function p, defined on B3. Hence the T- 
P decomposition is not unique, but has an additive degree of 
gauge freedom. The T-P potentials G and Hare analogs for 
fluid flows in three dimensions of the streamfunction and 
velocity potential in two dimensions. The T-P decomposi- 
tion itself is akin to the complex streamfunction representa- 
tion of planar incompressible flows. This can be seen by look- 
ing at the T-P decomposition in components, 

G,s + H, 
v= 

( ) 

- Gx + H,z . (3) 
- A,H 

So G is the analog of the streamfunction in two dimensions, 
and H,, is the analog of the velocity potential. Just as in the 
planar case, the horizontal velocity components are 
Cauchy-Riemann expressions, so flows with nonzero veloc- 
ity may be associated to singular complex functions. The 

gauge freedom in the T-P decomposition corresponds to 
adding an analytic function of the variablex + iy to the com- 
plex sum F = H,, + iG. 

6. A Class of flows with nonzero helicity: Beltrami flows 
Beltrami flows are steady solutions of Euler equations 

that satisfy the relation curl v = /2v (where il = const). That 
is, the velocity and vorticity are everywhere parallel, so the 
fluid particles move along their axis of rotation. Beltrami 
flows have nonzero helicity, A #O, since VW = ilv2 is of con- 
stant sign throughout the flow. Using the T-P decomposi- 
tion (3) allows the Beltrami property to be written as 

where A = a,, + a,,Y + a,,. Relation (4) for Beltrami flows 
holds (up to gauge equivalence) when G = AH and 
-AH=i12H. 

The ABC flo~,“‘~ 
f==Asinz+Ccosy, j=Bsinx+Acosz, (5) 
i=Csiny+Bcosx, 

provide an example of Beltrami flow, for which ;1= 1 and 
G=H= -Axcosz+Bcbsx+Csiny, in the T-P de- 
composition. These flows are nonintegrable, except at isolat- 
ed values of the parameters A, B, and C. (See Dombre et al. I0 
for a clear treatment of ABC flows from a dynamical systems 
viewpoint, as well as a description of their applicability in 
fluid dynamics. ) 

C. Zero-helicity flows 
The vector formulas for v and o from (3 ), 

v=VH,, +VGXb-AH%, 
o=VG,,-VAHx&-AG2, (6) 

provide the following expression for the helicity integrand 
v’o, in terms of the T-P potentials: 

y’o = %[VAH xVH,= + VG., xVG 1 + V, G-V, AH 

+ (VH,, - AH%)*(VG,, - AG%). (7) 
The volume integral of the first term in- (7) vanishes for 
Bows with periodic boundary conditions, and for flows van- 
ishing at infinity. Upon assuming periodic boundary condi- 
tions, the remaining two terms in (7) vanish in one of the 
following three cases: (I) G #O, H = 0; (II) G = 0, H #O; 
or (III) G = kVH, - AH = 2 “H, where k is a constant vec- 
tor. These three cases provide us with three categories of 
zero-helicity flows: 

(I) G#O, H=O. 
This first category consists of two-dimensional Hamiltonian 
flows, with G as the Hamiltonian. (Of course, G is also the 
streamfunction.) Plainly, these Hamiltonian flows have 
zero helicity, and (being two dimensional) they are integra- 
ble: 

(II) G=O, HfO. 

Arter” studies a flow in this second category. The Arter flow 
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is given by expressible as 

x= -sinxcosycosz+bsin2xcos2z, 
j,= -cosxsinycosz+bsin2ycos2z, 

i=2cosxcosysinz-b(cos2x+cos2y)sin22, (8) 

H=cosxcosysinz-;b(cos2x+cos2y)sin2z. 

This is a model flow with square planform for the onset of 
Rayleigh-BCnard convection. Expression (8) gives a flow 
that appears to be nonintegrable unless b either vanishes, or 
is infinite. (In the later case, time t must be resealed to time 
t’ = bt.) Numerical integrations are claimed in Ref. 6 to 
show the onset of chaos resulting from resonant island over- 
lap, as b increases from zero to unity. Thus, although they do 
have zero helicity, the flows in this category would be ex- 
pected in general to be nonintegrable unless His separable in 
z, i.e., unless H =f(x,y)g(z); 

(III) G = k*VH, - AH = il ‘H (k is a constant vector). 

A good example in this third category is a flow introduced by 
Veronis” and by Chandrasekhar’ as a model for the onset of 
Rayleigh-Bknard convection with rotation, 

,i= -sinxcosycosz-K’cosxsinycosz, 

g= -cosxsinycosz+K’sinxcosycosz, (9) 
i=2cosxcosysinz. 

This flow is derived as a lowest-mode linearized solution of 
the Navier-Stokes equations with buoyancy for a rotating 
fluid in a periodic cube ( T3) under the Boussinesq approxi- 
mation. The parameter K is proportional to the rate of rota- 
tion around the z axis. The flow (9) is obtained in the T-P 
decomposition ( 1) by setting 

i = vc, xvc,, (13) 
where C, = log( sin x/sin y) and C, = sin x sin y sin z are 
two constants of the motion. Thus Eq. (13) is the “unper- 
turbed version” ofboth the Arter flow ( 8) and the Chandra- 
sekhar flow (9). Equation ( 13) implies that the flow takes 
place on intersections of the level surfaces of C, and C, . This 
flow may be shown to be Hamiltonian and integrable, by 
defining a noncanonical Poisson bracket, namely 
{F, G) = VC,*VF xVG. One may immediately verify that 
this bracket-which is essentially a “Nambu” bracket”-- 
indeed defines a Poisson bracket on R3. (That is, the bracket 
is a bilinear, skew-symmetric operation satisfying both the 
Jacobi identity and the Leibnitz rule for derivation of a prod- 
uct.) However, the B3 Poisson bracket is degenerate, since 
{C’ ,G} = 0 for every G(x). The function C, is said to be the 
“Casimir function” for this IRS Poisson bracket. In terms of 
this bracket, Eq. (13) acquires the Hamiltonian form 
% = {x,C,}. Hence Eq. (13) is Hamiltonian on LX3 with 
Hamiltonian function C, and Casimir function C, for this 
noncanonical Poisson bracket. Clearly, the roles of C, and 
C, could be reversed. Indeed, restricting to a level surface of 
either C, or C, reduces the problem to a one degree of free- 
dom Hamiltonian system with the usual symplectic Poisson 
bracket. All such systems are integrable. Thus Eq. ( 13)) rep- 
resenting either the Chandrasekhar flow with K = 0, or the 
Arter flow with b = 0, is an integrable Hamiltonian system. 
Furthermore, the Arter flow with b #O is expressible as 

i=VC,xVC,+bVC;xVC;, 

where 

H=cosxcosysinz and G=K2H,,. (10) 

Remark: The Chandrasekhar flow in Eq. (9) can also be 
characterized as separable (in the z dependence of H with 
G = K ‘H,= ), which is also sufficient for T-P flows in ( 1) to 
be integrable. One may demonstrate this remark by regard- 
ing z as an independent variable in (9) and dividing the first 
and second equations by the third one, Hence 

dx ’ I(tanx+K2tany), 
d(log sinz) = -- 2 

dy 
d( log sin z) 

= -+ (tany-K’tanx). 
(11) 

C; = log[sin(x + y)/sin(x - y)], 

C; = sin(x + y)sin(x - y)sin(2z). 
(15) 

Hence the Arter flow is the sum of two integrable Hamilto- 
nian flows in R3, related to each other by a 45” rotation sym- 
metry. This discrete symmetry produces invariant surfaces 
for the Arter flow in the shape of vertical prisms, whose 
horizontal cross sections are 45” isoceles triangles. Numeri- 
cal simulations for both the Arter flow and the Chandrasek- 
har flow are discussed in the next section. 

III. SIMULATION OF THREE-DIMENSIONAL 
ADVECTION 
A. Volume-preserving numerical algorithm 

These equations are expressible in two-dimensional vector 
form as 

/dx\ 

Following Thyagaraja and Haas, l3 Scove114 has devel- 
oped a volume-preserving (and hence helicity-preserving) 
numerical integration algorithm for divergenceless vector 
fields in R3, which we use below to visualize the Arter flow 
(8) and the Chandrasekhar flow (9). Details of the numeri- 
cal algorithm can be found in Scovel. l4 Here we give a brief 
sketch of the algorithm because this is one of its first applica- 
tions in fluid dynamics. Consider a map (x,y,z) -+ (X, Y,Z) 
represented implicitly by the equations 
x --f(x,y,Z), Y = g(x,y,Z). z = h(x,y,Z). (16) 
(This is akin to using old and new phase-space variables in 
the generating function for a canonical transformation in 

( 14) 

1 KZ = 
-K” 1 ’ (12) 

where a = log sin z. Equation ( 12) shows the Chandrasek- 
har flow always has two-dimensional structure and, thus, is 
integrable in the variable z. In fact, the flow lines of ( 12) are 
periodic, except for heteroclinic orbits. 

Remark: The Arter flow (8) with b = 0 coincides with 
the Chandrasekhar flow (9) when K = 0. This basic flow is 
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FIG. 1. Illustration of the second-order volume-preserving integrator. 

classical mechanics. ) Requiring dXd Y dZ = dx dy dz 
shows that the map ( 16) is volume preserving, if and only if, 

- af ag af ag ah 
az ax ay ay ax (17) 

This relation determines h as the partial integral with respect 
to Zof thex-y Jacobian of the two generating functions f and 
g. Now, let v = (u, ,u2 ,u3 ) be a divergenceless vector field. 
Approximating the flow map of this vector field as a function 
oft, and matching coefficients to determine f and g, gives 

x=-x + tfi (X,Y,Z), y=y + tgl (XYJ), 

z = Z + th, WG) + t’h, (x,y,Z), 
where 

fi =v1, g1 =v2, h, = -uj 

and 
z 

h2 = 
s “Lx “2.y - ~1,~“2,x dz. (18) 

Denote by p(t), the resulting map (x, y, z) -+ (X, Y, Z) . The 
map p(t) is first-order accurate and volume preserving to 
within the accuracy to which the implicit equations are 
solved. In the following numerical examples, Picard iter- 
ation has been terminated upon convergence to within one 
part in IO- . ” Composing two of these first-order maps pro- 

1 

(4 

FIG. 2. ‘The fundamental cubic cell of the flow in Eq. (13) is {x,y,.z~O~~x~ 
-I- lul<n, O~Z<d. 
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FIG. 3. Arter Rows with three different values of the parameter b: (a) 
b = 0.03, (b) b = 0.3, and (c) b = 1.0 
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(a) 

FIG. 4. Chandrasekhar flows with K = 2. The initial positions ofthe parti- 
cles are: (a) in the plane .z = 0; and (b) slightly above the plane z = 0. 

ducesthemapsketchedinFig. 1,$(2t) =cp -‘( -t)*q$t), 
which is volume preserving and second-order accurate [since 
the first-order map p(t) satisfies to second-order accuracy 
the group property q ‘(t) .p( t) = identity]. 

Explicitly, we use the following second-order volume- 
preserving integrator, Cxo,yo,zn;t) + 0, xv1 A$ -t- AtI 
-+ (x2 ,y2,z2;t + 2 At), which alsopreserves the helicity of thh 

J?ow,‘4 

XI =x0 + Atf, (x,,~o,z,;t), 

YI =Y, + Atg, (x,,Y~J~ it), (19) 

z, =zl -t-Ath, (x,,yo,z,;t) + (A02h2(xoao,z,;t), 

xl =x2 - Atf, (xz,y2,z1;t + 2 At), 

YI =y2 - Atg, (x,rYz,z,;t+ 2 At), (20) 
z, = z, -- At h, (x,,y2,z,;t + 2 At) 

+ (W2h, Ix,,y,,z,;t + 2 At). 
(Notice that this algorithm would also apply to time-depen- 
dent flows, upon regarding the time variable t as a param- 
eter. ) 

B. Arter and Chandrasekhar flow simulations 
We now concentrate on the Arter and Chandrasekhar 

flows, and show the results of numerical simulations using 

(b) 

FIG. 5. Two magnified views of Fig. 4 (b), showihg the ribbons in the vicin- 
it9 of the saddle focus. 

the volume preserving integrator for several parameter val- 
ues in each case. Figure 2 shows the fundamental cubical cell 
(O<]x] + ]y(<r, O<z<r) ofthe basic flow (13), whichmay 
be regarded as the “unperturbed version” of both of these 
flows. The planes x = 0,~~ = 0 are invariant surfaces. (In 
Fig. 2, two closed trajectories are shown in the plane y = 0, 
x<O.)Thepointsx=O, k?r,y=O, +a,andz=O,rrare 
1-2 saddle-focus points, with heteroclinic connections be- 
tween z = 0 and z = rr. The lines of intersection of the planes 
x = + n-/2 and y = + n-/2 with the horizontal midplane 
z = 7r/2 are sets of (neutrally stable) fixed points. 

Arter flows with different values of b are shown in Figs. 
3(a)-3(c). [Figure 3(a): b = 0.03; Fig. 3(b): b = 0.3; and 
Fig. 3 (c): b = 1.0.1 The fundamental cubical cell is com- 
posed of eight triangular prisms. (Namely, the basic prism 
O<x<7~/2, x(y<r - x, O<z<n; and its reflections across 
theplanesx=O,y=O,x+y=O,andx-y=O.) These 
prisms are each preserved for Arter flows with any value of 
b. As b increases, Figs. 3 (a)-3 (c) show the Arter flows be- 
coming more and more dispersed in the prism (but not tan- 
gled; remember this flow has zero helicity) . This dispersion, 
seen as punctures of phase trajectories through a horizontal 
plane through the midpoint of the cube, is claimed in Ref. 6 
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to show chaos resulting from resonance-island overlap. At 
b = 0.5, a multiple pitchfork bifurcation occurs in the Arter 
flow, leading to an even more complex flow shown in Fig. 
3(c). 

The Chandrasekhar flows (9) for K # 0 have the same 
fixed points as for K = 0, but the basic cell shape of the flow 
is no longer cubical. Figure 4 shows particle trajectories for 
the Chandrasekhar flows with K = 2. As shown in Fig. 4, 
these flows follow three-dimensional dynamics near a peri- 
odic network of saddle-focus heteroclinic connections with 
discrete four-fold symmetry under rotations by 77/2. A parti- 
cle started at a point in the plane z = 0 spirals with rotation 
frequency K into the (x,~) origin, then rises along the z axis 
up to the horizontal plane z = n; whereupon it spirals 
outward in one sense, reaches an inflection point, and then 
spirals inward in the opposite sense into another spiral focus 
in the same plane. Thereafter, the particle falls along the z 
direction until it reaches the z = 0 plane, where it again spir- 
als outward and returns through its initial position. On each 
of the horizontal planes z = 0 and z = n; there is a square 
array of interconnected saddle-focus points, and the planes 
at z = 0 and z = r are connected by heteroclinic orbits 
through those saddle focus points. Each saddle focus in this 
heteroclinic network satisfies the Shilnikov criterion.15 So 
one would be tempted to conjecture that the perturbations 
introduced by numerical error would, in general, produce 
three-dimensional Shilnikov chaos. This is likely, though it 
has not been proven for the numerical algorithm we use here. 
Particles started at points slightly off the planes of z = 0, 7i 
tend to stay in thin, ribbon-shaped regions in curly sheets 
with opposite handed twists at z = 0 and z = IT [see Fig. 
5 (a) 1. In Fig. 5 (b), we see how the ribbons from different 
initial positions entangle themselves around the axes. Nu- 
merical results from the volume-preserving integrator show 
intricate patterns in these ribbons as a result of the phase 
relations imposed upon near-recurrence orbits by conserva- 
tion of volume in the numerical scheme. Without the small 
errors introduced by numerical approximation, the near re- 

currences seen in the numerical integrations of the Chandra- 
sekhar flow in Fig. 5 would be exact periodic orbits. The 
process of braiding and unbraiding, tangling and untangling 
of these orbits induced in the vicinity of the saddle foci by 
perturbations of the Chandrasekhar fow is a topic for future 
study. 
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